A Hybrid Parallel Genetic Algorithm for Reliability Optimization
نویسندگان
چکیده
Reliability engineering is known to have been first applied to communication and transportation systems in the late 1940's and early 1950's. Reliability is the probability that an item will perform a required function without failure under stated conditions for a stated period of time. Therefore a system with high reliability can be likened to a system which has a superior quality. Reliability is one of the most important design factors in the successful and effective operation of complex technological systems. As explained by Tzafestas (1980), one of the essential steps in the design of multiple component systems is the problem of using the available resources in the most effective way so as to maximize the system reliability, or so as to minimize the consumption of resources while achieving specific reliability goals. The improvement of system reliability can be accomplished using the following methods: reduction of the system complexity, the allocation highly reliable components, and the allocation of component redundancy alone or combined with high component reliability, and the practice of a planned maintenance and repair schedule. This study deals with reliability optimization that maximizes the system reliability subject to resource constraints.
منابع مشابه
A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملComparing Parallel Simulated Annealing, Parallel Vibrating Damp Optimization and Genetic Algorithm for Joint Redundancy-Availability Problems in a Series-Parallel System with Multi-State Components
In this paper, we study different methods of solving joint redundancy-availability optimization for series-parallel systems with multi-state components. We analyzed various effective factors on system availability in order to determine the optimum number and version of components in each sub-system and consider the effects of improving failure rates of each component in each sub-system and impr...
متن کاملAn Effective Hybrid Genetic Algorithm for Hybrid Flow Shops with Sequence Dependent Setup Times and Processor Blocking
Hybrid flow-shop or flexible flow shop problems have remained subject of intensive research over several years. Hybrid flow-shop problems overcome one of the limitations of the classical flow-shop model by allowing parallel processors at each stage of task processing. In many papers the assumptions are generally made that there is unlimited storage available between stages and the setup times a...
متن کاملA Genetic-Fuzzy Control Strategy for Parallel Hybrid Electric Vehicle
Hybrid Electric Vehicles (HEVs) are driven by two energy convertors, i.e., an Internal Combustion (IC) engine and an electric machine. To make powertrain of HEV as efficient as possible, proper management of the energy elements is essential. This task is completed by HEV controller, which splits power between the IC engine and Electric Motor (EM). In this paper, a Genetic-Fuzzy control strategy...
متن کاملDesign of a Hybrid Genetic Algorithm for Parallel Machines Scheduling to Minimize Job Tardiness and Machine Deteriorating Costs with Deteriorating Jobs in a Batched Delivery System
This paper studies the parallel machine scheduling problem subject to machine and job deterioration in a batched delivery system. By the machine deterioration effect, we mean that each machine deteriorates over time, at a different rate. Moreover, job processing times are increasing functions of their starting times and follow a simple linear deterioration. The objective functions are minimizin...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کامل